
Final exam — Partial Differential Equations (WBMA008-05)

Friday 21 June 2024, 15.00h-17.00h

University of Groningen

Instructions

1. The use of calculators is not allowed. It is allowed to use a “cheat sheet” (one sheet A4,
both sides, handwritten,“wet ink”).

2. All answers need to be accompanied with an explanation or a calculation: only answering
“yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1+ p/10.

Problem 1 (6 + 6 + 8 = 20 points)

Consider the following nonuniform transport equation:

∂u
∂ t

+ e−x ∂u
∂x

= 0, u(0,x) = f (x).

(a) Compute all characteristic curves; express the answer as x = x(t).

(b) Determine the region D of the (t,x)-plane in which the solution is determined by the initial
condition.

(c) Compute the solution u(t,x) for every (t,x) ∈ D.

Problem 2 (5 + 15 = 20 points)

Consider the following heat equation for 0 < x < 1 and t > 0:

ut = uxx, ux(t,0) = u(t,0), ux(t,1) =−u(t,1).

(a) Use the anszatz u(t,x) = eλ tv(x) and derive a boundary value problem for v.

(b) Show that there exist infinitely many nontrivial solutions for λ < 0.

Problem 3 (10 points)

Let u : R2→ R be a C2 function such that

u(−1,3) = 5 and u(x,y) = x when (x+1)2 +(y−3)2 = 4.

Show that u is not harmonic.

Turn page for problems 4 and 5!
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Problem 4 (12 + 8 = 20 points)

Recall the following function:

G0(x,y;ξ ,η) =− 1
2π

log‖(x,y)− (ξ ,η)‖,

where ‖ · ‖ denotes the Euclidean norm.

(a) Use the method of images to construct Green’s function for Poisson’s equation on

Ω = {(x,y) ∈ R2 : y > 1}.

(b) Compute the normal derivative along ∂Ω (with respect to the variables ξ and η) of Green’s
function constructed in part (a).

Problem 5 (20 points)

Use Fourier transforms to solve the following equation:

∂ 2u
∂ t∂x

=
∂ 2u
∂x2 , u(0,x) =

1
x2 +9

.

Express the solution explicitly (i.e. without using integrals).

Please do not forget to complete the course evaluation!

End of test (90 points)
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Solution of problem 1 (6 + 6 + 8 = 20 points)

(a) The characteristic curves are found by solving the equation dx/dt = e−x.
(2 points)

By introducing the function

β (x) =
∫

ex dx = ex,

we can write the characteristic curves as

t 7→ (t,β−1(t + k)) = (t, log(t + k)),

where k ∈ R is an arbitrary constant and t >−k.
(4 points)

(b) Along a characteristic curve the solution u is constant. To determine the value of this constant
we need to use the initial condition and that is only possible when the characteristic curve
intersects the x-axis.
(3 points)

Note that the characteristic curves intersect the x-axis if and only if k > 0. This means that
the solution u(t,x) is only determined by the initial condition in the region

D = {(t,x) ∈ R2 : t ≤ 0}∪{(t,x) ∈ R2 : t > 0 and x > log(t)}.

(3 points)

(c) Method 1. In the region D the solution is given by

u(t,x) = f (β−1(β (x)− t)) = f (log(ex− t)).

(8 points)

Method 2. Assume that (t̄, x̄) ∈ D. Observe that this point lies on the characteristic curve
with k = ex̄− t̄. This curve intersects the x-axis in the point (0, log(ex̄− t̄)).
(4 points)

Since solutions are constant along the characteristic curve we have

u(t̄, x̄) = u(0, log(ex̄− t̄)) = f (log(ex̄− t̄)).

Dropping the bars from the notation gives the desired expression.
(4 points)
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Solution of problem 2 (5 + 15 = 20 points)

(a) Substituting the ansatz u(t,x) = eλ tv(x) into the equation gives the following boundary value
problem for the function v:

v′′(x)−λv(x) = 0, v′(0) = v(0), v′(1) =−v(1).

(5 points)

(b) For λ =−ω2 with ω > 0 we have v(x) = acos(ωx)+bsin(ωx).
(4 points)

The boundary conditions imply that

bω = a,
−aω sin(ω)+bω cos(ω) =−acos(ω)−bsin(ω).

(4 points)

Substituting the first equation into the second gives

b
[
(1−ω

2)sin(ω)+2ω cos(ω)
]
= 0.

(Alternatively, we can find the expression in square brackets by computing the determinant
of the coefficient matrix.)
(4 points)

For a nontrivial solution we need b 6= 0 and thus

tan(ω) =
2ω

ω2−1
.

(4 points)

Note that the right hand side tends to zero as ω → ∞. Since the tangent is π-periodic, the
above equation has countably many solutions.
(3 points)
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Solution of problem 3 (10 points)

Method 1: using the maximum principle. Let D the be disc with center (−1,3) and radius 2. If u
is harmonic on this disc, then it follows that the maximum and minimum values of u can only be
attained on the boundary of D.
(4 points)

It is clear that the maximum value of u on ∂D is given by the maximum x-coordinate of points
along ∂D. The maximum value is given by −1+2 = 1.
(2 points)

However, the value of u at the center of D is larger. Indeed, u(−1,3) = 5 > 1. Therefore, the
maximum value of u is attained in the interior of D which contradicts the maximum principle.
We conclude that u cannot be harmonic.
(4 points)

Method 2: using the mean value property. Let D the be disc with center (−1,3) and radius 2. If
u is harmonic, then the mean value property gives

u(−1,3) =
1

4π

∮
∂D

uds.

(3 points)

Computing the line integral on the right hand side gives

1
4π

∮
∂D

uds =
1

4π

∫ 2π

0
u(−1+2cos t,3+2sin t)2dt

=
1

2π

∫ 2π

0
−1+2cos t dt

=
1

2π

[
− t +2sin t

]2π

0

=−1.

(5 points)

So the mean value property gives the contradiction 5 =−1. From this we conclude that u cannot
be harmonic.
(2 points)
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Solution of problem 4 (12 + 8 = 20 points)

(a) We construct the Green’s function by setting G = G0 + z, where the function z satisfies
∆z = 0 on Ω and z = −G0 on ∂Ω. To a point (ξ ,η) ∈ Ω we associate an image point
(ξ ′,η ′) ∈ R2 \Ω. The ansatz

z(x,y;ξ ,η) =
a

2π
log‖(x,y)− (ξ ′,η ′)‖+ b

2π
.

guarantees that z is harmonic on Ω.
(3 points)

Take (ξ ′,η ′) to be the reflection of (ξ ,η) through the line y = 1:

(ξ ′,η ′) = (ξ ,2−η).

Then for all points (x,1) ∈ ∂Ω we have

‖(x,1)− (ξ ,η)‖= ‖(x,1)− (ξ ,2−η)‖.

(6 points)

Setting a = 1 and b = 0 gives Green’s function:

G(x,y;ξ ,η) =− 1
2π

log‖(x,y)− (ξ ,η)‖+ 1
2π

log‖(x,y)− (ξ ,2−η)‖.

(3 points)

Equivalently, we can write

G(x,y;ξ ,η) =− 1
4π

log
[
(x−ξ )2 +(y−η)2]+ 1

4π
log
[
(x−ξ )2 +(y−2+η)2].

(b) At any point (ξ ,1) ∈ ∂Ω the outward normal unit vector is given by n = (0,−1), and thus

∂G
∂n

(x,y;ξ ,1) = (∇G•n)(x,y;ξ ,1) =−∂G
∂η

(x,y;ξ ,1)

(2 points)

We have that

−∂G
∂η

(x,y;ξ ,η) =− 1
2π
· y−η

(x−ξ )2 +(y−η)2 −
1

2π
· y−2+η

(x−ξ )2 +(y−2+η)2

(4 points)

Finally, evaluating for η = 1 gives

−∂G
∂η

(x,y;ξ ,1) =− 1
2π
· y−1
(x−ξ )2 +(y−1)2 −

1
2π
· y−1
(x−ξ )2 +(y−1)2

=− 1
π
· y−1
(x−ξ )2 +(y−1)2 .

(2 points)
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Solution of problem 5 (20 points)

Taking the Fourier transform of the equation gives

ik
dû
dt

= (ik)2û and thus
dû
dt

= ikû.

(3 points)

The solution of this equation is given by

û(t,k) = û(0,k)eikt .

(2 points)

From the list of Fourier transforms we obtain:

F
[
e−a|x|]=√ 2

π

a
k2 +a2 where a > 0.

(5 points)

Setting a = 3 and using the symmetry principle gives

û(0,k) = F

[
1

x2 +9

]
=

1
3

√
π

2
e−3|−k| =

1
3

√
π

2
e−3|k|.

(5 points)

In conclusion, we have

û(t,k) =
1
3

√
π

2
e−3|k|eikt .

Note that by the shift theorem the factor eikt results in replacing x by x+ t after taking the inverse
Fourier transform. This gives:

u(t,x) =
1

(x+ t)2 +9
.

(5 points)
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